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Abstract
The heat capacity of low-dimensional spin systems is studied using theoretical and numerical
techniques. Keeping only two energy states, the system is mapped onto the two-level-system
(TLS) model. Using the low-temperature Lanczos method, it is confirmed that the behavior of
TM and the energy gap as functions of the control parameter is the same in the two models
studied; a conclusion that can probably be extrapolated to the general case of any system that
possesses an energy gap.

1. Introduction

Gaps in the energy spectrum play a crucial role in condensed
matter physics. Fundamental properties in superconductivity
or in the fractional quantum Hall effect originate from the
existence of a gap between the ground state and the excited
states. In particular, it is extremely interesting to study
the behavior of the gap in low-dimensional quantum spin
systems. Many exact numerical results on one-dimensional
quantum spin systems with nearest neighbor couplings have
been accumulated during recent decades.

The one-dimensional (1D) spin-1/2 system was solved by
Bethe [1] in 1931 with his famous ansatz. The ansatz allows the
computation of the energy eigenvalues. The isotropic 1D spin-
1/2 system with nearest neighbor couplings is gapless. The
anisotropic spin-1/2 chain is denoted by the XXZ model [2, 3].
The Hamiltonian of the XXZ model on a periodic chain of N
sites is

H = J
N∑

i=1

Sx
i Sx

i+1 + Sy
i Sy

i+1 + �Sz
i Sz

i+1, (1)

where J > 0 is the exchange coupling in the xy easy plane
and � is the anisotropy in the z direction. The Ising regime
is governed by � > 1 and there is a gap in the excitation
spectrum, while for � � −1, the ground state is in the
ferromagnetic phase and there is a gap over the ferromagnetic
state. In the region −1 < � � 1, the ground state of the
system is in the gapless spin-fluid phase.

The spin-1 system is not solvable with the Bethe ansatz
or similar techniques. The anisotropic spin-1 chain is only

gapless [4] in the region −1 < � < 0. Haldane [5]
formulated in 1983 his famous conjecture that quantum spin
chains (isotropic) with integer spin S = 1, 2, . . . have a gap,
whereas chains with half-integer spin S = 1/2, 3/2, . . . are
gapless.

During the last two decades ladder-systems [6] as quantum
spin systems between one and two dimensions have been
studied with numerical methods. Concerning the ground
state properties, it has been found that ladder-systems with
an even number of legs (l = 2, 4, 6, . . .) have a gap; those
with an odd number (l = 1, 3, 5, . . .) do not. In particular,
since the antiferromagnetic two-leg ladder-systems have a gap
in the spin excitation spectrum, they reveal extremely rich
quantum behavior in the presence of a magnetic field [7].
Such quantum phase transitions in spin systems with gapped
excitation spectra were indeed studied experimentally [8–13].

On the other hand, investigating the behavior of the energy
gap of spin systems in the vicinity of quantum critical points
has attracted much interest recently [3, 14–16]. In general, the
critical point of a thermodynamic system in the Hamiltonian
formulation is defined as the value at which the energy gap
vanishes as a power law, which is known as scaling behavior.
The opening of the energy gap in the vicinity of the quantum
critical point is found to scale with a critical exponent. The
value of the critical gap exponent is very important to find the
universality class of a continuous quantum phase transition.

The discovery of gapless or gapped excitations has led
to the investigation of the thermodynamic properties. One
of the most important thermodynamic functions is the heat
capacity. Usually, there is a lambda-type anomaly in the figure
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of the heat capacity versus temperature. It was interpreted as
indicating a phase transition to a magnetically ordered phase.
An important characteristic of the low-dimensional magnets is
the absence of the long range order in models with a continuous
symmetry at any finite temperature [17]. There is also a broad
maximum in the plot of the heat capacity versus temperature,
characteristic of low-dimensional systems. This is known as
the Schottky peak.

In this paper, theoretical and numerical results are reported
for the low-temperature behavior of the heat capacity in low-
dimensional spin systems. Theoretically, by keeping only two
lowest states, the system is mapped to the well known two-
level-system (TLS) model. In this case, the heat capacity
is found exactly as a function of the energy gap and the
temperature. It is shown that the position of the Schottky heat
capacity peak, TM , and the energy gap behave in the same
way as a function of the control parameter. In section 2, the
mapping to the TLS model is explained and the theoretical
results are presented. In section 3, the results of the low-
temperature Lanczos calculations are presented. Numerically,
TM as a function of the control parameter is computed for
‘the alternating spin-1/2 chains in a magnetic field h’ and ‘the
1D Heisenberg Hamiltonian with a staggered magnetic field
hs’. Finally, the summary and conclusions are presented in
section 4.

2. Low-temperature limit heat capacity:
two-level-system approach

In this section we discuss a theoretical approach to find the
effect of the energy gap on the heat capacity of the quantum
spin systems. The spectrum energy of a quantum system may
be gapped or gapless. Since, we are going to study the sign of
the gap on the heat capacity, gapped systems are considered.
At very low temperature we can consider only the lowest
energy levels. If we keep only two lowest energy states, the
system maps to the two-level-system (TLS) model [18]. We
have assumed that the energy gap of this TLS is g where
E1 = E0 + g, E0 and E1 are the ground and first excited states
respectively.

Our purpose is to determine the behavior of the heat
capacity for the quantum spin systems. The heat capacity is
expressed by the following relation

Cv = 1

KBT 2

[
∂2 ln Z

∂β2

]
(2)

where Z is the partition function denoted by

Z = Tr
{
e−βH

}
. (3)

Here β = 1
KBT , KB is the Boltzmann constant and T is

temperature. We have assumed that KB = 1. At very low-
temperature limit (TLS limit), we can write

Z � e−βE0 + e−βE1 = e−βE0(1 + e−βg). (4)

Finally from the above equation one can show

Cv = x2

cosh2(x)
, (5)

Figure 1. Temperature-dependence of the heat capacity of TLS
(equation (5)) for different energy gap values (g). TM shows the
position of the Schottky heat capacity peak for the system with
g = 2.

where we defined x = g
2T . This result predicts a Schottky-like

peak of the heat capacity behavior versus the x variation. The
position of the Schottky peak takes place at xM � 1.2, where
we have: tanh(xM) = 1/xM . This result shows explicitly an
upward increase of the heat capacity versus the magnetic field
for x < xM and a monotonic decrease for x > xM . We have
plotted the thermal behavior of equation (5) in figure 1. Here,
xM corresponds to the position of the Schottky peak, TM , in a
constant gap value. It is clear that by increasing the gap value,
|g|, the peak approaches higher temperatures and inversely, by
decreasing the gap value, it approaches lower temperatures.
Therefore we can conclude that width of the energy gap may
affect the position of the Schottky heat capacity peak. At a very
low-temperature regime, all gapped thermodynamic systems
(N → ∞, N = number of the spins) can be mapped to the
above TLS model.

So far we have not considered any degeneracy. In the
general case both of the first two energy levels (TLS) have a
degeneracy. It is well known for a two-level-system (TLS) that
the account of degeneracy leads to a change in the effective
gap and consequently in the TM for the Schottky anomaly of
heat capacity [19]. In the presence of degeneracy, by a little
manipulation, one can show

Cv = x2

cosh2(x + x ′)
, (6)

which is very similar to equation (5). Here we denoted x ′ = gs

2T

and gs = T ln d2
d1

, where d1 and d2 have been considered for the
order of the degeneracy of the ground state and the first excited
state of the system respectively. As we mentioned before,
this result predicts a Schottky-like peak in the heat capacity
behavior. The Schottky heat capacity peak takes place at xM

which satisfies tanh(xM + x ′
M) = 1/xM , where x ′

M = gs

2TM
.

If we assumed that d1 < d2 then gs < 0 and therefore the
generalized gap (g + gs) will be smaller than the gap. Thus the
Schottky peak moves to higher values of the gap in respect to
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the case gs = 0 (without degeneracy). In the same manner for
the case: d2 < d1 we have gs > 0, therefore the generalized
gap will be larger than the gap. Thus the Schottky peak moves
to the lowest values of the gap in respect of the case gs = 0.

3. Numerical results

In recent years, numerical methods have been extensively
developed and applied to quantum many-body problems. The
most frequently used numerical method for these problems
is the exact diagonalization of small systems employing the
Lanczos technique [20]. The exact diagonalization of small
correlated systems does not have any restrictions on the model.
The deficiency of the method is in the relative smallness of
system sizes. So far the method has been essentially restricted
to the evaluation of the T = 0 static and dynamical quantities,
i.e. properties of the ground state.

Jaklic̃ et al introduced a method for the evaluation
of finite-temperature properties, based on the Lanczos
diagonalization technique for small systems [21]. This method
avoids the calculation of all eigenfunctions of the system.
Instead, it introduces a procedure where the sampling over
all states is reduced to a random partial sampling, while only
the approximate ground state and excited state wavefunctions,
generated by the Lanczos technique, are used for the evaluation
of matrix elements. The size limitations of the method are
effectively comparable to those encountered in the Lanczos-
type diagonalization technique applied to the ground state
calculations.

In the following, we present our numerical results on the
heat capacity of the several 1D spin-1/2 models which are
obtained by the method of Jaklic̃.

3.1. Alternating Heisenberg spin-1/2 chains in a transverse
magnetic field

In this section we consider the alternating spin-1/2 chains in
a magnetic field. Since the antiferromagnetic–ferromagnetic
(AF–F) chains have a gap in the spin excitation spectrum, they
reveal extremely rich quantum behavior in the presence of the
magnetic field.

The ground state phase diagram of the AF–F alternating
chain in a magnetic field is studied by the numerical
diagonalization and the finite-size scaling based on conformal
field theory [22]. It is shown that the magnetic state is
gapless and described by the Luttinger liquid phase. It is also
found that the magnetic state is characterized by the algebraic
decay of the spin correlation functions. Recently, Yamamoto
et al described the magnetic properties of the model in a
magnetic field in terms of the spinless fermions and the spin
waves [23]. They employed the Jordan–Wigner transformation
and treated the fermionic Hamiltonian within the Hartree–Fock
approximation. They have also implemented the modified spin
wave theory to calculate thermodynamic functions such as the
heat capacity and the magnetic susceptibility. More recently,
using the numerical Lanczos method, the effect of a uniform
transverse magnetic field on the ground state phase diagram
of a spin-1/2 AF–F chain with anisotropic ferromagnetic

coupling has been studied [24]. The Hamiltonian of the model
under consideration on a periodic chain of N sites is given by

H = JAF

N/2∑

j=1

[Sx
2 j−1Sx

2 j + Sy
2 j−1Sy

2 j + Sz
2 j−1Sz

2 j ]

− JF

N/2∑

j=1

[Sx
2 j S

x
2 j+1 + Sy

2 j Sy
2 j+1

+ �Sz
2 j Sz

2 j+1] + h
N∑

j=1

Sx
j (7)

where Sx,y,z
j are spin-1/2 operators on the j th site. JF and

JAF denote the ferromagnetic and antiferromagnetic couplings
respectively. The limiting case of isotropic ferromagnetic
coupling corresponds to � = 1 and h is the transverse
magnetic field. To explore the nature of the excitation
spectrum, we use the modified Lanczos method to diagonalize
numerically finite chains (N = 12, 16, 20, 24). The energies
of the few lowest eigenstates were obtained for chains with
periodic boundary conditions. First, we have computed the
three lowest energy eigenvalues of N = 12, 16, 20 chains with
JAF = 2JF and different values of the anisotropy parameter �.

In figure 2(a) we have plotted the results of calculations
for the isotropic case � = 1.0. The excitation gap is
determined [24] in the system as the difference between the
first excited state and the ground state. As is clearly seen from
this figure in the case of zero magnetic field, the spectrum of
the model is gapped. For h �= 0 the gap decreases linearly
with h and vanishes at the critical field, hc1 = 1.55 ± 0.01.
This is the first level crossing between the ground state energy
and the first excited state. To get an accurate estimate of
hc1 we have obtained the first level crossing for system sizes
of N = 12, 14, . . . , 24. The finite-size behavior of these
values leads us to hc1 = 1.55 ± 0.01 for N −→ ∞. The
spectrum remains gapless for hc1 < h < hc2 and becomes
once again gapped for h > hc2 = 2.0. With increasing field,
for h > hc2 the gap increases linearly with h. In the region
hc1 < h < hc2 we also observe numerous additional level
crossings between the lowest eigenstates. These level crossings
lead to incommensurate effects that manifest themselves in
the oscillatory behavior of the spin correlation functions. All
crossings disappear at h > hc2 and the correlation functions
do not contain oscillatory terms in this region of the phase
diagram.

In marked contrast with the isotropic case, similar analysis
of the few lowest levels for an anisotropic AF–F chain in the
presence of a transverse magnetic field reveal a principally
different behavior. The gap as a function of the transverse
magnetic field h has been computed for the anisotropy
parameter � = 0.5 and different chain lengths N =
12, 16, 20. In figure 2(b) we have plotted results of these
calculations. As is seen from the figure, the excitation spectrum
in this case is gapped except at the two critical fields hc1 =
1.64±0.01 and hc2 = 1.88±0.01 [24]. We have employed the
phenomenological renormalization group (PRG) method [25]
to determine these critical fields (hc1 and hc2 ). The PRG
equation is

(N + 4)gap(N + 4, h′) = Ngap(N, h), (8)
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Figure 2. (a) The excitation gap of a spin-1/2 AF–F chain for the
isotropic case � = 1.0 in a uniform magnetic field for different size
numbers (N = 12, 16, 20). (b) The excitation gap of a spin-1/2
AF–F chain in a uniform transverse magnetic field with anisotropic
ferromagnetic coupling � = 0.5, for different size numbers
(N = 12, 16, 20).

where gap(N, h) = E1(N, h) − E0(N, h) is the energy gap
value for chain length N in a magnetic field h. At the critical
point, N(E1 − E0) should be size independent for large enough
systems in which the contribution from irrelevant operators is
negligible. Thus, we accurately determined the critical points
by the PRG method. We defined hc(N, N + 4) as the N-
dependent fixed point of equation (8), and it is extrapolated
to the thermodynamic limit in order to estimate hc. At the
critical point h = h′ = hc, therefore, the curves of N(E1 −
E0) versus h for sizes N and N + 4 cross at certain values
hc1(N, N + 4) and hc2(N, N + 4) (finite-size critical points).
The thermodynamic critical points (hc1 and hc2 ) are obtained
by appropriately extrapolating hc1(N, N +4) or hc2(N, N +4)

to N → ∞.
In the region hc1 < h < hc2 the spin gap, which appears at

h > hc1 , first increases versus external field and after passing
a maximum decreases to vanish at hc2 . At h > hc2 the gap
once again opens and, for a sufficiently large transverse field
becomes proportional to h. To study the finite-temperature
properties of the model, we have used the Jaklic̃ formalism. We

Figure 3. (a) The Schottky heat capacity peak value, TM , versus the
transverse magnetic field, for a spin-1/2 AF–F chain, and the
isotropic case � = 1.0 in the uniform transverse magnetic field for
system size: N = 20. (b) The Schottky heat capacity peak value, TM ,
as a function of the magnetic field, for a spin-1/2 AF–F chain in the
uniform transverse magnetic field with anisotropic ferromagnetic
coupling: � = 0.5, and size number: N = 20. The inset shows the
same quantity in the intermediate magnetic field region,
hc1 < h < hc2 .

have computed a hundred lowest eigenvalues of the energies.
We have considered different values of the transverse magnetic
field, h, and anisotropy parameter �. Therefore using these
hundred eigen-energies, we have computed the heat capacity as
a function of the temperature (T ). The position of the Schottky
heat capacity peak, TM is determined as TM . In figure 3(a)
we have plotted TM as a function of the magnetic field h. To
arrive at this plot, we have considered JAF = 2JF, � = 1
and N = 20. As is clearly seen from this figure, the position
of the Schottky heat capacity peak, TM , TM , decreases by
increasing the magnetic field up to the critical field, hc1 . In the
intermediate region of the magnetic field, hc1 < h < hc2 , TM

is independent of magnetic field. The anomalous behavior is
the result of finite-size effects. With increasing magnetic field,
for h > hc2 , TM increases almost linearly.

It is surprising that the behavior of TM versus the magnetic
field is in complete agreement with the gap behavior with
respect to the magnetic field. Thus we conclude that the energy
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Figure 4. The Schottky heat capacity peak value, TM , versus the
energy gap for a spin-1/2 AF–F chain with anisotropic ferromagnetic
couplings: � = 1.0 and � = 0.5, and size number: N = 20.

gap signals the position of the Schottky heat capacity peak.
To confirm our idea, we have plotted TM versus the transverse
magnetic field for JAF = 2JF, the anisotropy parameter � =
0.5 and N = 20 in figure 3(b). As we can see from this figure
for low-transverse magnetic field, h < hc1 , the behavior of
TM is the same as the isotropic case. But in the intermediate
region, hc1 < h < hc2 , TM first increases versus transverse
field and after passing a maximum, decreases up to hc2 (see the
inset of the figure 3(b)). For the higher transverse magnetic
field, h > hc2 , the position of the Schottky heat capacity peak
increases as a previous one. This behavior of the TM is in
complete agreement with the effect of the transverse magnetic
field on the energy gap (figure 2(b)).

Finally, in figure 4 we have plotted TM versus the energy
gap for N = 20, JAF = 2JF and different values of the
anisotropy parameter � = 0.5, 1.0. For convenience, the
numerical results of the region h < hc1 are shown. It is clearly
seen that the position of the Schottky heat capacity peak TM

increases by increasing the energy gap of the system. This is
in good agreement with results obtained within the two-level
model.

3.2. The 1D AF-Heisenberg model in a staggered field

The general feature developed for the alternating spin-1/2
chains in a magnetic field can be applied to the 1D Heisenberg
Hamiltonian with a staggered magnetic field hs,

H = J
N∑

i=1

[−→S i .
−→
S i+1 + hs(−1)i Sz

i ]. (9)

It is expected [26–29] that the staggered field induces an
excitation gap in the S = 1

2 AF-Heisenberg chain, which
should be otherwise gapless. The excitation gap caused by the
staggered field is indeed found in the real magnets [30–32]. In
the absence of the staggered field (hs = 0), the eigen-spectra
are exactly solvable. In the case of the staggered magnetic field
(hs �= 0), the integrability is lost. The staggered magnetic field

Figure 5. (a) The excitation gap of the 1D AF-Heisenberg model in a
staggered field as a function of the magnetic field for different size
number (N = 12, 16, 20). (b) The position of the Schottky heat
capacity peak, TM , for the 1D AF-Heisenberg model in a staggered
field versus the staggered magnetic field with size number N = 20.

produces an antiferromagnetic ordered (Néel order) ground
state.

To examine the effect of the staggered magnetic field on
the energy gap, we have implemented the modified Lanczos
algorithm for finite-size chains N = 12, 16, 20 using periodic
boundary conditions. The energy gap is determined as the
difference between the first excited state and the ground
state [14], and calculated for different chain lengths and
staggered fields hs. The energy gap is determined as the
difference between the first excited state and the ground
state [14].

We have plotted, in figure 5(a), the energy gap versus the
staggered magnetic field hs. The results have been plotted for
different chain sizes N = 12, 16, 20. It can be seen that the
spectrum is gapless in the absence of the staggered magnetic
field (hs = 0). The application of a staggered magnetic field
induces a gap in the spectrum of the model. With increasing
the field, for hs > 0, the energy gap increases with hs.

Applying the Jaklic̃ method we have computed a hundred
lowest energies for different values of the staggered magnetic
field. The heat capacity is computed as a function of the
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temperature. In figure 5(b), the position of the Schottky
anomaly heat capacity peak TM is plotted versus hs for the
chain size N = 20. As it is seen from the figure, that TM in this
case increases by increasing the staggered magnetic field. This
result is in good agreement with the idea that the gap signals
the position of the Schottky heat capacity peak, TM .

4. Summary and discussion

The low-temperature behavior of the heat capacity of low-
dimensional spin systems is studied using theoretical and
numerical approaches. Theoretically, the system is mapped to
the well known two-level-system (TLS) model. In this case, the
heat capacity is found exactly as a function of the energy gap
and the temperature. The position of the Schottky heat capacity
peak, TM , is determined. It is shown that TM as a function of
the control parameter behaves in the same way as the energy
gap versus the control parameter. This shows that the gap has
an influence on the position of the Schottky heat capacity peak.

Numerically, the finite-temperature Lanczos method is
applied. The Lanczos method is implemented to obtain a
hundred of the lowest excited state energies. This formalism
is applied to two model chains up to N = 24 in length.
First, the alternating spin-1/2 chains in a magnetic field are
considered. Since, the antiferromagnetic–ferromagnetic (AF–
F) chains have a gap in the spin excitation spectrum, they
reveal extremely rich quantum behavior in the presence of the
magnetic field. The energy gap and heat capacity are computed
for both isotropic and anisotropic cases. The numerical results
are computed for different values of the external magnetic field.
It is shown, in complete agreement with the theoretical results,
that the field-dependence of the TM and the energy gap are
the same. Finally, the 1D Heisenberg model with a staggered
magnetic field hs is investigated. It is shown that the staggered
field induces an excitation gap in the S = 1

2 AF-Heisenberg
chain, which should be otherwise gapless. Using the above
numerical procedure, the position of the Schottky heat capacity
peak is computed. It is confirmed that the energy gap signals
the Schottky heat capacity peak.
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